# JOURNAL OF CHEMICAL & ENGINEERING DATA

## Solubilities of Fatty Acids and Triglycerides in 1-Bromopropane

Emilio A. Cepeda,\* Raquel Bravo, and José M. Lomas

Departamento de Ingenieria Quimica, Facultad de Farmacia, Universidad del Pais Vasco, Paseo de la Universidad 7, 01006 Vitoria, Alava, Spain

**ABSTRACT:** The solubilities of the fatty acids, tetradecanoic (myristic), hexadecanoic (palmitic), and octadecanoic (stearic), and of the triglycerides, glyceryl tridodecanoate (trilaurate), glyceryl trimyristate, glyceryl tripalmitate, and glyceryl tristearate, in 1-bromopropane were measured by the dynamic method from (280 to 350) K. The solubility of fatty acids decreased with the increase of molecular weight and was lower than ideal solubility. The systems triglycerides-1-bromopropane presented negative deviations of Raoult's law. The experimental data were correlated with Van Laar, Wilson, nonrandom two-liquid (NRTL), and universal quasichemical activity coefficient (UNIQUAC) equations.



## INTRODUCTION

The demand for biodegradable materials has opened a possibility for using vegetable oils as an alternative to petroleum-based materials. Major disadvantages of vegetable oils are inadequate oxidative stability and problems associated with its use in high- or in low-temperature applications.<sup>1</sup> The poor oxidative stability is due to the rapid reactions occurring at the double bond in the oil molecule. In this way, saturated fatty acids have been used as metal-working lubricants.<sup>2</sup> Also, vegetal oil-water emulsions can be used as metalworking fluids<sup>3</sup> that replace the commonly used petroleum-based emulsions and in other applications.<sup>4</sup> The purpose of the emulsion in metal working is to provide maximum cooling with water and at the same time to impart some lubricating properties to reduce friction between the moving chip and the contact surface of any cutting tool; as a result the part being machined has a surface that contains water and oil. The vegetable oils are composed of triglycerides mainly. The cleaning of the metal surface has been made with organic solvents as trichloroethylene, trichloroethane, chlorodifluoroethylene, and fluorodichloroethylene, which have been designated ozone-depleting compounds and their use regulated by legislation. 1-Bromopropane is an alternative intended to replace solvents like trichloroethane and some freons that damage the upper ozone layer.<sup>5</sup>

On the basis of the Fedors method,<sup>6</sup> triglycerides have calculated solubility parameters of approximately 18.8  $(MPa)^{1/2}$ . According to Yalkowsky,<sup>7</sup> any two liquids will be completely miscible at room temperature if their solubility parameters do not differ by more than six units. Therefore, any liquid having a solubility parameter between 13 and 24 will be miscible with triglycerides. The solubility parameter of 1-bromopropane is 18.2 MPa<sup>1/2</sup>, falling within this range (Table 1). So, it is of interest to study the solubility of fatty acids and triglycerides in 1-bromopropane for its use as a degreaser.

Experimental solubilities of dodecanoic (lauric) acid in 1bromopropane were reported in a previous work.<sup>8</sup> However, it was found that no experimental solubility data of tetradecanoic, hexadecanoic, and octadecanoic acids and of the triglycerides, glyceryl trilaurate, glyceryl trimyristate, glyceryl tripalmitate, and glyceryl tristearate in 1-bromopropane were available in the open literature, so an additional study is needed.

The objective of this work was the study of the solid—liquid equilibrium of fatty acids and triglycerides in 1-bromopropane. This led to the experimental determination of solubility data and the correlation of activity coefficient—composition with the usual thermodynamic models.

## EXPERIMENTAL SECTION

**Materials.** The used fatty acids were: myristic acid (Sigma; purity  $\geq 0.99$  mass fraction; CAS Registry No. 544-63-8), palmitic acid (Panreac; purity 0.98 mass fraction; CAS Registry No. 57-10-3), and stearic acid (Panreac; purity, 0.98 mass fraction, CAS Registry No. 57-11-4). The acids were crystallized three times from acetone. Its purity checked by gas chromatography (8700 Perkin-Elmer FID detector, with a 30 m Stabilwax column of 0.32 ID and oven temperature of (180 to 240) °C at 10 °C·min<sup>-1</sup>) was 0.999 mass fraction.

The used triglycerides were: glyceryl trilaurate (2,3-di-(dodecanoyloxy)propyl dodecanoate, Sigma, purity  $\geq$ 0.99 mass fraction, CAS Registry No. 538-24-9), glyceryl trimyristate (1,3-di(tetradecanoyloxy)propan-2-yl tetradecanoate, Sigma, purity  $\geq$ 0.99 mass fraction, CAS Registry No. 555-45-3), glyceryl tripalmitate (1,3-di(hexadecanoyloxy)propan-2-yl hexadecanoate, Sigma, purity  $\geq$ 0.99 mass fraction, CAS Registry No. 555-44-2), and glyceryl tristearate (1,3-di-

Received:November 5, 2011Accepted:February 27, 2012Published:March 8, 2012

Table 1. Physical Properties of Solutes Used in the Calculations: Molecular Weight MW, Melting Point  $T_{tr}$  Enthalpy of Fusion  $\Delta H_{fus}$ , Molar Volume MV(298 K), Polarity, Structure Volume Parameter for the UNIQUAC Equation r, and Structure Area Parameter for the UNIQUAC Equation q

|                       |        | $T_{\mathrm{f}}$     | $\Delta H_{ m fus}$  | MV                                 | $\delta^{11}$      |                        |         |         |
|-----------------------|--------|----------------------|----------------------|------------------------------------|--------------------|------------------------|---------|---------|
| substance             | MW     | K                    | kJ·mol <sup>−1</sup> | cm <sup>3</sup> ·mol <sup>-1</sup> | MPa <sup>1/2</sup> | polarity <sup>11</sup> | r       | 9       |
| myristic acid         | 228.38 | 327.55 <sup>15</sup> | 45.1 <sup>15</sup>   | 270.62 <sup>16</sup>               | 17.65              | 0.13                   | 10.2952 | 8.5520  |
| palmitic acid         | 256.43 | 335.95 <sup>15</sup> | 53.7 <sup>15</sup>   | 300.27 <sup>16</sup>               | 17.54              | 0.12                   | 11.6440 | 9.6320  |
| stearic acid          | 284.48 | 342.75 <sup>15</sup> | 61.2 <sup>15</sup>   | 302.39 <sup>16</sup>               | 17.46              | 0.11                   | 12.9928 | 10.7120 |
| glyceryl trilaurate   | 639.01 | 319.7 <sup>17</sup>  | 123.5 <sup>17</sup>  | 714.79 <sup>13</sup>               | 17.64              | 0.11                   | 27.7370 | 22.6920 |
| glyceryl trimyristate | 723.17 | 329.8 <sup>17</sup>  | $148.2^{17}$         | 817.15 <sup>13</sup>               | 17.52              | 0.09                   | 31.7834 | 25.9320 |
| glyceryl tripalmitate | 807.33 | 338.7 <sup>17</sup>  | $171.7^{17}$         | 932.27 <sup>13</sup>               | 17.44              | 0.08                   | 35.8298 | 29.1720 |
| glyceryl tristearate  | 891.49 | 345.7 <sup>16</sup>  | 196.8 <sup>17</sup>  | 1034.23 <sup>13</sup>              | 17.37              | 0.07                   | 39.8762 | 32.4120 |
| 1-bromopropane        | 122.99 |                      |                      | 90.86 <sup>17</sup>                | 18.08              | 0.17                   | 3.2199  | 2.7600  |

Table 2. Solubility of Fatty Acids (1) in 1-Bromopropane (2) and Activity Coefficients

|        | myristic acid |            |        | palmitic acid |            | stearic acid |       |            |  |  |
|--------|---------------|------------|--------|---------------|------------|--------------|-------|------------|--|--|
| $x_1$  | T/K           | $\gamma_1$ | $x_1$  | T/K           | $\gamma_1$ | $x_1$        | T/K   | $\gamma_1$ |  |  |
| 0.0285 | 285.1         | 2.9600     | 0.0730 | 301.9         | 1.5529     | 0.0247       | 301.3 | 2.1082     |  |  |
| 0.0415 | 288.5         | 2.5466     | 0.1240 | 307.1         | 1.3222     | 0.0330       | 303.4 | 1.8632     |  |  |
| 0.0679 | 292.7         | 2.0630     | 0.1758 | 311.2         | 1.2305     | 0.0462       | 306.0 | 1.6343     |  |  |
| 0.0920 | 295.4         | 1.8166     | 0.2235 | 314.1         | 1.1835     | 0.0556       | 307.4 | 1.5201     |  |  |
| 0.1246 | 298.9         | 1.6150     | 0.2726 | 316.8         | 1.1511     | 0.0663       | 308.9 | 1.4309     |  |  |
| 0.1685 | 302.1         | 1.4563     | 0.3234 | 319.3         | 1.1261     | 0.0729       | 309.7 | 1.3848     |  |  |
| 0.1836 | 302.9         | 1.4179     | 0.3585 | 320.6         | 1.1119     | 0.0889       | 311.3 | 1.2832     |  |  |
| 0.2026 | 303.9         | 1.3774     | 0.4048 | 322.3         | 1.0956     | 0.0969       | 312.2 | 1.2595     |  |  |
| 0.2503 | 306.9         | 1.3018     | 0.5141 | 325.8         | 1.0645     | 0.1290       | 315.0 | 1.1644     |  |  |
| 0.2800 | 308.6         | 1.2668     | 0.5698 | 327.4         | 1.0514     | 0.1575       | 317.1 | 1.1159     |  |  |
| 0.3292 | 310.8         | 1.2211     | 0.6644 | 329.7         | 1.0326     | 0.1873       | 319.0 | 1.0772     |  |  |
| 0.4990 | 316.5         | 1.1219     | 0.6825 | 330.0         | 1.0294     | 0.2293       | 321.6 | 1.0604     |  |  |
| 0.5171 | 316.9         | 1.1141     | 0.7362 | 331.1         | 1.0209     | 0.3179       | 325.7 | 1.0219     |  |  |
| 0.5599 | 317.9         | 1.0970     |        |               |            | 0.3607       | 327.5 | 1.0197     |  |  |
| 0.6112 | 319.4         | 1.0784     |        |               |            | 0.4044       | 329.3 | 1.0285     |  |  |
|        |               |            |        |               |            | 0.4805       | 331.8 | 1.0244     |  |  |
|        |               |            |        |               |            | 0.6711       | 336.6 | 1.0064     |  |  |

(octadecanoyloxy)propan-2-yl octadecanoate, Sigma, purity  $\geq$ 0.99 mass fraction, CAS Registry No. 555-43-1). The triglycerides were purified by recrystallization in acetone (three times). Its purity (as methyl ester) checked by gas chromatography was 0.998 mass fraction.

1-Bromopropane (Panreac; purity 0.99 mass fraction; CAS Registry No. 106-94-5) was dried over 4 Å molecular sieves (Sigma). The purity, checked by GC (TCD detector at 160 °C, column OV 17, 3 m,  $1/8^{\circ}$  I.D., oven temperature 65 °C), was higher than 0.995 mass fraction.

The physical properties of materials used in the calculations are listed in Table 1.

**Dynamic Method.** A mixture of solute and solvent with a fixed composition was prepared by mass with an analytical balance (Mettler H33AR, Zurich, Switzerland) with an uncertainty of 0.0001 g. The mixture was placed in a closed Pyrex glass cell immersed in a glass thermostat. Continuous stirring was achieved with a magnetic stir bar. The mixture was first heated quickly to achieve one phase, and then, after being cooled to obtain acid crystallization in the solvent, the sample was heated again very slowly (less than 0.1 K every 30 min) with continuous stirring. The temperature at which the last crystal disappeared during the second or third heating cycle was detected visually, and it was taken as the solid–liquid equilibrium temperature. This temperature was measured with a thermometer (Afora, Spain) with a works certificate,

subdivided in 0.1 K, immersed in the liquid. The standards used in the thermometer calibration were certified by the German Official Calibration Ludwig Schneider Messtechnik GmbH Nr DKD-K-0670, which is an European Accreditation (EA) and International Laboratory Accreditation Cooperation (ILAC) accepted laboratory. The measurements were carried out in the (280 to 350) K temperature range. All experiments were made at least three times, and the results were averaged. The solubility was reproducible within uncertainties (defined as standard deviation) of  $\pm$  0.0005. Meanwhile, the temperature was reproducible within an uncertainty of 0.1 K. The repeatability of the solubility experimental points was  $\pm$  0.1 K.

#### RESULTS AND DISCUSSION

The activity coefficient  $\gamma_i$  of the *i*th (solute) component in solid–liquid equilibrium can be calculated<sup>9</sup> by the following equation:

$$\ln(x_i \gamma_i) = -\frac{\Delta H^{\text{fus}}(T_{\text{tp}})}{RT_{\text{tp}}} \left[ \frac{T_{\text{tp}}}{T} - 1 \right] + \frac{\Delta C_p}{R} \left[ \frac{T_{\text{tp}}}{T} - 1 \right] - \frac{\Delta C_p}{R} \ln \left( \frac{T_{\text{tp}}}{T} \right)$$
(1)

| Гabl | e 3. | Sol | ubi | lity | of | Trig | lycerid | les | (1) | ) in | 1-I | Bromopro | pane | (2) | and | Activity | Coef | ficients |
|------|------|-----|-----|------|----|------|---------|-----|-----|------|-----|----------|------|-----|-----|----------|------|----------|
|------|------|-----|-----|------|----|------|---------|-----|-----|------|-----|----------|------|-----|-----|----------|------|----------|

|        | trilaurate |            |                       | trimyristate |            |                       | tripalmitate |            |                       | tristearate |            |
|--------|------------|------------|-----------------------|--------------|------------|-----------------------|--------------|------------|-----------------------|-------------|------------|
| $x_1$  | T/K        | $\gamma_1$ | <i>x</i> <sub>1</sub> | T/K          | $\gamma_1$ | <i>x</i> <sub>1</sub> | T/K          | $\gamma_1$ | <i>x</i> <sub>1</sub> | T/K         | $\gamma_1$ |
| 0.0475 | 289.6      | 0.1619     | 0.0297                | 296.7        | 0.0772     | 0.0243                | 303.5        | 0.0333     | 0.0132                | 308.1       | 0.0176     |
| 0.0572 | 291.4      | 0.1852     | 0.0363                | 298.6        | 0.0936     | 0.0510                | 310.7        | 0.0827     | 0.0239                | 312.2       | 0.0266     |
| 0.0773 | 294.0      | 0.2334     | 0.0466                | 301.2        | 0.1207     | 0.0778                | 315.4        | 0.1518     | 0.0347                | 315.2       | 0.0387     |
| 0.1246 | 299.3      | 0.3505     | 0.0539                | 302.2        | 0.1401     | 0.1092                | 319.7        | 0.2467     | 0.0472                | 318.2       | 0.0557     |
| 0.2225 | 306.1      | 0.5692     | 0.0611                | 303.6        | 0.1608     | 0.1781                | 325.5        | 0.4536     | 0.0549                | 319.6       | 0.0688     |
| 0.2819 | 308.8      | 0.6749     | 0.0744                | 305.7        | 0.2003     | 0.2270                | 328.2        | 0.5773     | 0.0661                | 321.8       | 0.0887     |
| 0.3638 | 311.5      | 0.7866     | 0.0788                | 306.7        | 0.2144     | 0.3294                | 331.4        | 0.7621     | 0.0765                | 323.1       | 0.1116     |
| 0.4123 | 312.8      | 0.8366     | 0.0834                | 307.2        | 0.2282     | 0.4208                | 333.4        | 0.8618     | 0.1158                | 327.9       | 0.2104     |
| 0.5179 | 314.8      | 0.9133     | 0.1046                | 309.8        | 0.2940     | 0.5614                | 335.4        | 0.9442     | 0.1750                | 332.6       | 0.3817     |
| 0.6323 | 316.6      | 0.9608     | 0.1844                | 316.4        | 0.5230     | 0.6916                | 336.7        | 0.9793     | 0.2953                | 337.7       | 0.6735     |
| 0.7686 | 318.1      | 0.9884     | 0.2204                | 318.2        | 0.6079     |                       |              |            | 0.3867                | 340.0       | 0.8099     |
|        |            |            | 0.2440                | 319.1        | 0.6567     |                       |              |            | 0.4762                | 341.5       | 0.8914     |
|        |            |            | 0.3749                | 323.1        | 0.8437     |                       |              |            | 0.5864                | 342.9       | 0.9483     |
|        |            |            | 0.5421                | 326.0        | 0.9491     |                       |              |            | 0.6352                | 343.3       | 0.9639     |

Table 4. Parameters and Root-Mean-Square Deviation of Van Laar, Wilson, NRTL, and UNIQUAC for Fatty Acid-1-Bromopropane Systems

|          |        | Van Laar |                  |                     | Wilson              |                 |                     | NRTI                |      | UNIQUAC         |                     |                     |                 |
|----------|--------|----------|------------------|---------------------|---------------------|-----------------|---------------------|---------------------|------|-----------------|---------------------|---------------------|-----------------|
|          |        |          | $\sigma_{ m VL}$ | $\lambda_1$         | $\lambda_2$         | $\sigma_{ m W}$ | $A_1$               | A2                  |      | $\sigma_{ m N}$ | A <sub>12</sub>     | A <sub>21</sub>     | $\sigma_{ m M}$ |
| system   | $A_1$  | $A_2$    | K                | J·mol <sup>-1</sup> | J·mol <sup>-1</sup> | K               | J·mol <sup>-1</sup> | J·mol <sup>-1</sup> | α    | K               | J·mol <sup>-1</sup> | J·mol <sup>-1</sup> | K               |
| myristic | 1.2468 | 0.3302   | 0.822            | 1645.4              | 1535.6              | 0.796           | 1132.9              | 3269.6              | 1.58 | 0.186           | 802.53              | -73.930             | 0.888           |
| palmitic | 0.6065 | 0.2137   | 0.414            | -484.45             | 2049.89             | 0.429           | 674.98              | 4922.9              | 1.55 | 0.100           | 1377.6              | -584.02             | 0.465           |
| stearic  | 1.3314 | 0.1002   | 0.096            | 2844.8              | 855.31              | 0.427           | 8168.7              | 3542.6              | 1.92 | 0.073           | 453.90              | 162.060             | 0.538           |

where  $x_i$  is the mole fraction solubility and  $\gamma_i$  is the activity coefficient of the *i*th component at temperature *T*, respectively.  $\Delta H^{\text{fus}}(T_{\text{tp}})$  is the molar enthalpy of fusion of the *i*th solute at triple-point temperature  $(T_{\text{tp}})$ , and  $\Delta C_p$  is the difference in solute heat capacity between the solid and the liquid at the triple point.

The temperature and enthalpy of fusion at the triple point can be substituted in eq 1 by atmospheric melting points  $T_{\rm f}$  and the enthalpy of fusion  $\Delta H^{\rm fus}$  at  $T_{\rm fr}$  respectively, because their values present little difference. The contributions of the second and third terms are often minor and negligible, because the melting temperature is quite low. Thus, the solubility equation becomes:

$$\ln(x_i \gamma_i) = -\frac{\Delta H^{\text{fus}}}{RT_{\text{f}}} \left[ \frac{T_{\text{f}}}{T} - 1 \right]$$
(2)

The activity coefficients of the fatty acids and triglycerides in 1-bromopropane calculated with eq 2 are shown in Tables 2 and 3. The activity coefficients are greater than 1 in fatty acid– 1-bromopropane systems, so the solubility of the acid is lower than the ideal one. It indicates that the strength of intermolecular hydrogen bonds between molecules of the acid is greater than the polar–polar interaction between the fatty acid and the 1-bromopropane. The values of the activity coefficients tend to 1 when temperature increases because the strength of molecular bonds decreases, which is a normal behavior.<sup>10</sup> This behavior is similar to that seen in a previous paper<sup>8</sup> for the lauric acid–1-bromopropane system. The polarity of a substance  $(X_p)$  can be defined as follows to account for the contribution from hydrogen bonding and other polar interactions:<sup>11</sup>

$$X_{\rm p} = 1 - \frac{\delta_{\rm d}^2}{\delta_{\rm total}^2} \tag{3}$$

where  $\delta_d$  is the dispersion Hansen solubility parameter and  $\delta_{total}$  is the total solubility parameter. The polarity of fatty acids decreases from 0.13 to 0.11 when their aliphatic chain length increases from C14 to C18. In comparison with their corresponding fatty acids, triglycerides possess less polarity due to the domination of alkyl groups (Table 1). The polarity of 1-bromopropane is 0.17, so the fatty acids should be more soluble in 1-bromopropane than triglycerides with lower polarities (Table 1). However, the activity coefficients of triglycerides in 1-bromopropane (Table 3) are less than unity for low temperatures. This behavior indicates negative deviations from Raoult's law that must result from effects such as solvation or formation of electron donor–acceptor complexes.

The van Laar, Wilson, nonrandom two-liquid (NTRL), and universal quasichemical activity coefficient (UNIQUAC) models were used for the correlation of the activity coefficients of the systems. In the UNIQUAC model, the values of r and qwere taken from Hansen et al.<sup>12</sup> (Table 1)

The parameters of the equations were calculated using Marquardt's maximum neighbor method of minimization of the objective function  $\Omega$ ,

$$\Omega = \sum \left( T_i^{\exp} - T_i^{cal} \right)^2 \tag{4}$$

where  $T_i^{exp}$  and  $T_i^{cal}$  are the experimental and calculated equilibrium temperatures, respectively.

The root-mean-square deviation of temperature ( $\sigma$ ) between experimental and calculated values was defined by the following equation,

$$\sigma = \sum_{i=1}^{n} (T_i^{\exp} - T_i^{cal})^2 / (n-1)$$
(5)

where *n* is the number of experimental data,  $T_i^{exp}$  is the experimental temperature, and  $T_i^{cal}$  is the temperature calculated from eq 2 with the  $\gamma_i^{cal}$  values.

The curve-fit parameters of the van Laar, Wilson, NRTL, and UNIQUAC models<sup>13</sup> and root-mean-square deviations of temperature for fatty acids are listed in Table 4. The best description of solid–liquid equilibrium was given by the NRTL equation with the average root-mean–square deviation of temperature between 0.186 and 0.073, taking  $\alpha$  as variable (Figure 1) because the standard deviation of temperature is



**Figure 1.** Solubility of fatty acids in 1-bromopropane:  $\bigcirc$ , stearic acid;  $\square$ , palmitic acid;  $\triangle$ , myristic acid. The symbols represent the experimental data and the lines the NRTL correlation for each fatty acid.

very sensitive to the  $\alpha$  value. For example, the standard deviation of temperature deviations in the system myristic acid-1-bromopropane is  $\sigma$  = 0.18 for  $\alpha$  = 1.585 and  $\sigma$  = 1.026 for  $\alpha$  = 0.3. The results of correlations by use of the other models present worse average deviations (Table 4).

Table 5 displays the parameters and root-mean-square deviations of temperature of the models for triglycerides. The  $\alpha$  constant in NTRL equation was calculated to obtain a good data correlation, because the usual values (0.2 or 0.3) did not yield fair results. Figure 2 shows the experimental data and the NRTL correlation for each triglyceride. The good behavior of the van Laar model is noteworthy. In this case, the correlation



**Figure 2.** Solubility of triglycerides in 1-bromopropane:  $\bullet$ , glyceryl trilaurate;  $\triangle$ , glyceryl trimyristate;  $\Box$ , glyceryl tripalmitate;  $\bigcirc$ , glyceryl tristearate. The symbols represent the experimental data and the lines the NRTL correlation for each triglyceride.

of results is facilitated because of the parameters of the equation take negative values, corresponding to activity coefficients at infinite dilution less than 1. Similar results were found by Smith et al.<sup>14</sup> for triglyceride–chloroform systems.

## CONCLUSIONS

The fatty acid-1-bromopropane systems present positive deviations related to the Raoult law. The triglycerides-1-bromopropane systems present solubilities higher than ideal ones, which suggests that there is solvation or formation of the triglyceride-bromopropane complex. The solubility of triglycerides and fatty acids in 1-bromopropane converge on ideal solubility when the temperature increases. Four methods of correlation were used: van Laar, Wilson, NRTL, and UNIQUAC. In all cases good results were obtained, with the values of standard deviation between 0.09 and 0.88..

#### AUTHOR INFORMATION

#### **Corresponding Author**

\*Fax: 34945013014. E-mail: emilio.cepeda@ehu.es.

#### Funding

The authors thank financial support for this work provided by Ministerio de Ciencia y Tennología of Spain through project PPQ 2001-0270-C02-C01.

#### Notes

The authors declare no competing financial interest.

Table 5. Parameters and Root-Mean-Square Deviation of Van Laar, Wilson, NRTL, and Margules for Triglycerides-1-Bromopropane Systems

|              |         | Van Laar |                  |                     | Wilson              |                 |                     | NRTL                | UNIQUAC |                 |                     |                     |                  |
|--------------|---------|----------|------------------|---------------------|---------------------|-----------------|---------------------|---------------------|---------|-----------------|---------------------|---------------------|------------------|
|              |         |          | $\sigma_{ m VL}$ | $\lambda_1$         | $\lambda_2$         | $\sigma_{ m W}$ | $A_1$               | A2                  |         | $\sigma_{ m N}$ | A <sub>12</sub>     | A <sub>21</sub>     | $\sigma_{\rm M}$ |
| system       | $A_1$   | $A_2$    | К                | J·mol <sup>-1</sup> | J·mol <sup>-1</sup> | К               | J·mol <sup>-1</sup> | J·mol <sup>-1</sup> | α       | K               | J·mol <sup>-1</sup> | J·mol <sup>-1</sup> | K                |
| trilaurate   | -2.6171 | -0.6474  | 0.194            | -1215.0             | 1133.2              | 0.543           | -2063.0             | 768.59              | 1.40    | 0.239           | 1590.48             | -920.05             | 0.350            |
| trimyristate | -3.5763 | -0.5875  | 0.329            | 114.42              | -105.70             | 1.012           | -1860 0.2           | 681.67              | 2.11    | 0.205           | 2260.8              | -1336.21            | 0.313            |
| tripalmitate | -4.5999 | -0.6967  | 0.178            | -1254.7             | 1158.99             | 1.307           | -1942.6             | 3699.8              | 2.47    | 0.233           | 2285.3              | -1292.4             | 0.513            |
| tristearate  | -9.8103 | -0.1000  | 0.092            | -1252.8             | 1160.39             | 0.779           | -2392.51            | 4573.31             | 1.95    | 0.089           | 1616.9              | -914.55             | 0.417            |

Article

#### REFERENCES

(1) Erhan, S. Z.; Asadauskas, S. Lubricant basestocks from vegetable oils. *Ind. Crops Prod.* **2000**, *11*, 277–282.

(2) Adhvaryu, A.; Sung, C.; Erhan, S. Z. Fatty acids and antioxidant effects on grease microstructures. *Ind. Crops Prod.* 2005, 21, 285–291.

(3) John, J.; Bhattacharya, M.; Raynor, P. C. Emulsions containing vegetable oils for cutting fluid application. *Colloids Surf., A* 2004, 237, 141–150.

(4) McClements, D. J. Food emulsions. Principles, practices, and techniques, 2nd ed.; CRC Press: Boca Raton, FL, 2005.

(5) Environmental Protection Agency (EPA). Rules and Regulations; Federal Register: Washington, DC, 2007; Vol. 72, No. 103; pp 30142– 30167.

(6) Fedors, R. F. A method for estimating both the solubility parameters and molar volumes of liquids. *Polym. Eng. Sci.* 1974, 14, -.

(7) Patton, J. S.; Stone, B.; Papa, C.; Abramowitz, R.; Yalkowsky, S. H. Solubility of fatty acids and other hydrophobic molecules in liquid trioleoylglycerol. *J. Lipid Res.* **1984**, *25*, 189–197.

(8) Cepeda, E. A.; Bravo, R.; Calvo, B. Solubilities of Lauric Acid in n-Hexane, Acetone, Propanol, 2-Propanol, 1-Bromopropane, and Trichloroethylene from (279.0 to 315.3) K. J. Chem. Eng. Data 2009, 54, 1371–1374.

(9) Prausnitz, J. M.; Lichtenthaler, R. N.; Azevedo, E. G. *Molecular thermodynamics of fluid-phase equilibria*, 3rd ed.; Prentice Hall PTR: Upper Saddle River, NJ, 1999.

(10) Nordstrom, F. L.; Rasmuson, A. C. Prediction of solubility curves and melting properties of organic and pharmaceutical compounds. *Eur. J. Pharm. Sci.* **2009**, *36*, 330–344.

(11) Li, Y. Q.; Taulier, N.; Rauth, A. M.; Wu, X. Y. Screening of lipid carriers and characterization of drug-polymer-lipid interactions for the rational design of polymer-lipid hybrid nanoparticles (PLN). *Pharm. Res.* **2006**, *23*, 1877–1887.

(12) Hansen, H. K.; Rasmussen, P.; Fredenslund, A.; Schiller, M.; Gmehling, J. Vapor-liquid-equilibria by Unifac group contribution 0.5. Revision and extension. *Ind. Eng. Chem. Res.* **1991**, *30*, 2352–2355.

(13) Walas, S. M. Phase Equilibrium in Chemical Engineering; Butterworth-Heinemann: Newton, MA, 1985.

(14) Smith, R. L.; Acosta, G. M.; Arai, K. Prediction and correlation of triglyceride-solvent solid-liquid equilibria with activity coefficient models. *Fluid Phase Equilib.* **1998**, *145*, 53–68.

(15) Daubert, T. E.; Danner, R. P. Physical and thermodynamic properties of pure chemicals. Data compilation. Hemisphere Pub. Corp: New York, 1989.

(16) ChemCAD Professional. 5.2.0; Chemstations Inc.: Houston, TX, 2002.

(17) Ollivon, M.; Perron, R. Measurements of Enthalpies and Entropies of Unstable Crystalline Forms of Saturated Even Monoacid Triglycerides. *Thermochim. Acta* **1982**, *53*, 183–194.